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Abstract

Hyperthermia is a well-known, potentially life-threatening, side effect of stimulant psychoactive
substances that worsens the neurological outcome of hospitalized patients. However, current in
vitro methods to assess the hazard of psychoactive substances do not account for hyperthermia.
Therefore, this study determined the potency of five psychoactive substances (cocaine, MDMA (3,4-
methylenedioxymethamphetamine), methamphetamine, 3-MMC (3-methylmethcathinone) and
TFMPP (3-trifluoromethylphenylpiperazine)) to affect neuronal activity at physiological and
hyperthermic conditions.

Neuronal activity of rat cortical cultures grown on microelectr~a. ~rrays (MEAs) was recorded at
37°C before, and after 30 min and 4.5 h drug exposure 1-1u00 uM) at 37°C or 41°C. Neuronal
activity was also measured after a washout period of 12 h /24 h after the start of the exposure) at
37°C to investigate recovery of neuronal activity.

Without drug exposure, hyperthermia ind'.ce.’ a1, odest decrease in neuronal activity. Following
acute (30 min) exposure at 37°C, all dr'gs concentration-dependently inhibited neuronal activity.
Increasing the temperature to 41°C sig 1i'ic . ntly exacerbated the reduction of neuronal activity ~2-
foldforall drugs compared to 37°7.. ®rolonged (4.5 h) exposure at 41°C decreased neuronal activity
comparable to 37°C. Neuronar Aactivity (partly) recovered following drug exposure at both
temperatures, although re ~ove ry from exposure at 41°C was less pronounced for most drugs. None
of the exposure conditicn- affected viability.

Since acute exposure at hyperthermic conditions exacerbates the decrease in neuronal activity
induced by psychoactive substances, effects of hyperthermia should be included in future hazard

assessment of illicit drugs and new psychoactive substances (NPS).

Keywords: hyperthermia; designer drugs; hazard characterization; in vitro neuronal function;

neuronal activity.



1. Introduction

Oneintwenty people between 15-64 years are estimated to have used at least one drugin the last
year (UNODC 2019b). After cannabis, stimulants are the most used drugs. Stimulants range from
‘classic’ illicit drugs like cocaine and 3,4-methylenedioxymethamphetamine (MDMA) to new
psychoactive substances (NPS) like phenethylamines and cathinones (UNODC 2019a).

Most illicit drugs and NPS affect the central nervous system by inhibiting the reuptake of
monoamines (forreview see Hondebrink et al. (2018)). The drug-induced increases in extracellular
monoamines can result in intended effects (Capela et al. 2009; Gler.>on 2014), but also in adverse
psychiatric and cardiovascular effects (Tyrkko et al. 2016; UNODPT .77 3a),

Hyperthermia is amongst the most often reported adver. » etfrects following exposure to classic
stimulants and NPS (Greene et al. 2008; UNODC 2019a). Pr- sumably, this is at least partly due to
drug-induced activation of cell metabolism (in_rcasing heat production) and peripheral
vasoconstriction (reducing heat dissipatior ;(G 'eei.2 et al. 2008). As drugs are often used in warm
and humid dance clubs, fatal body temperatu.es up to 43°C have been reported (Greene et al.
2003).

Hyperthermia adversely affects ce, *larfunction. It exacerbates hypoxia, increases the production of
reactive oxygen species (ROS)and notentiates glutamate-induced cytotoxicity, potentially leading to
neuronal dysfunction se zures, irreversible brain damage and coma (Kiyatkin 2007; Walter and
Carraretto 2016). In it o, higher temperatures stimulate the release and uptake of
neurotransmitters (Nakashima and Todd 1996; Xie et al. 2000; Volgushev et al. 2004), while the
neuronal activity of rat hippocampal neurons decreased (Takeya 2001). In addition, temperatures
below the physiological range also decrease the neuronal activity in rat brain slices (Guatteo et al.
2005), indicating that both an increase and decrease in temperature can lower neuronal activity.
In vivo studies have shown that hyperthermia exacerbates the activation of astrocytes and the
production of ROS caused by exposure to amphetamine-type stimulants (Carvalho et al. 2012;

Kiyatkin 2013). While in vivo studies can help determine the added neurotoxic effects of



hyperthermia, the large number of NPS that have entered the market complicates (in vivo)
screenings for hazard characterization.

Using neuronal cultures grown on microelectrode arrays (MEA), we previously determined the
potency of several illicit drugs and NPS to affect neuronal activity at 37°C (Zwartsen et al. 2018;
Zwartsen et al. 2019; Zwartsen etal. 2020). MEAs non-invasively record extracellularfield potentials
of neuronal networks and provide different metrics describing neuronal network activity, like spike -,
burst- and network burst frequency (Johnstone ef al. 2010). We, therefore, used MEA recordings to
determine whether hyperthermic conditions (41°C) exacerbate ai.>rations in neuronal activity
induced by llicitdrugs and NPS during acute (30 min) and prolorae ' 1 +.5 h) exposure and following

washout of the drugs (19 h recovery measurement, i.e. 24| after the start of the exposure).

2. Methods

2.1 Chemicals

MDMA, D-methamphetamine, 3-MMC, TFMPP a..d cocaine hydrochloride salts were purchased from
Lipomed (Weil am Rhein, Germany) o S -yt Hillen (IJsselstein, The Netherlands) (see table 1 for
IUPAC names, CAS numbers, p'.'ty and source). These psychoactive drugs were selected to
represent the different categor. ~s (amphetamine-type stimulants, cathinones, piperazines and
other) of available druss c 1the drug market. Chemical structures of the tested drugs are depicted in
Supplementary Fig.1. Ne''r ,basal-A (NB-A) medium, L-glutamine (200 mM), penicillin/streptomycin
(5000 U/mL/5000 mg/mL), fetal bovine serum (FBS) and B-27 supplement (without vitamin A) were
purchased from Life Technologies (Bleiswijk, The Netherlands). All other chemicals were obtained
from Sigma-Aldrich. Stock solutions of drugs were freshly prepared at the day of the experimentin

FBS medium.



2.2 Neuronal cultures

Animal experiments were performed in agreement with Dutch law, the European Community
directives regulating animal research (2010/63/EU) and approved by the Ethical Committee for
Animal Experiments of Utrecht University. All efforts were made to respect the 3Rs (replacement,
reduction and refinement of animals in experimental studies) by minimizing the number of animals
needed and theirsuffering. Rat cortical cultures were used as this is currently the gold standard for
neuronal activity measurements (Tukker et al. 2018).

Rat pups born of timed-pregnant Wistar rats (Envigo, Horst, The Ne “herlands) were sacrificed on
postnatal day 0-1 and cortical cultures were prepared as describ=a ~~_viouslyin (Nicolas et al. 2014).
For MEA recordings, 48-well MEA plates (Axion BioSystems: ¢, Atlanta, USA) were coated with 0.1%
polyethyleneimine (PEIl). Next, 50 uL cell suspension was .77 :d to each well of a 48-well MEA plate
(1x 10° cells/well) in dissection medium consisting >f 5C)mL NB-A supplemented with 14 g sucrose,
1.25 mL L-glutamine (200 mM), 5 mL glutar.ate (3.2 mM), 5 mL penicillin/streptomycin and 50 mL
FBS. After 2 h, 450 L dissection medivm was auded to each well. The day after cell plating (day in
vitro 1; DIV1), 450 pL/well dissection m :L.um was replaced with 450 pL/well glutamate medium
(500 mL NB-A medium, 14 g sucrc. 2, 1.25 mL L-glutamine (200 mM), 5 mL glutamate (3.5 mM; to
preventastrocyte overgrowth), 5 vL penicillin/streptomycin and 10 mL B-27 (to maintain neuronal
differentiation), pH7.4). A DIV 1,450 plL/well glutamate medium was replaced with 450 pL/well NB-
A FBS medium (glutamate .ree dissection medium).

For cytotoxicity measurements, 100 L rat cortical cell suspension (3.0x 10* cells/well) was added to
each well of a transparent 96-well plate (Greiner Bio-one, Solingen, Germany). The medium was
changed at DIV1 (from dissection medium to glutamate medium) and DIV4 (from glutamate medium
to NB-A FBS medium) as described for the 48-well MEA plates, using 100 pL/well. The glutamate to
FBS medium change on DIV4was done with phenol-red free NB-A medium FBS medium to prevent
interference with the fluorescence recording. For both assays, cultures were kept in NB-A FBS

medium at 37°C, 5% C0O,/95% air atmosphere until use at DIV9-10.



2.3 MEA recordings

MEA recordings at 41°C were performed as described in Zwartsen et a/. (2019); (2020), with minor
modifications. In short, neuronal activity was measured using a Maestro 768-channel amplifier
(Axion BioSystems Inc, Atlanta, USA). Baseline spontaneous neuronal activity was recorded for 30
min at 37°C. Thereafter, recording temperature was increased to 41°Cin 60 sec. Next, wells were
exposedinthe MEA platform; each well was exposed to only one concentration of a particular drug
as cumulative dosing may result in unwanted effects such as receptor desensitization. Two min
following drug addition, neuronal activity was determined durin. a 30 min ‘acute exposure’
recording (Fig. 1). As the half-life of most illicit drugs and NPS ..> " wvo ranges from 0.5to 10 h in
plasma (Jufer et al. 2000; Kalant 2001; Antia et al. 2009; Cru. *kshank and Dyer 2009; Shimshoni et al.
2015), we subsequently incubated the plate at 41°C, 5% (2 -/.5% airatmosphere for4 h, afterwhich
activity was measured during a 30 min ‘prolonged 2y pc sure’ recording (41°C).

Next, exposure medium wasreplacedwithf esi Nb AFBS medium and the plate was incubated for
19 h at 37°C, untilthe 30 min ‘recovery’ recordii.g (at 37°C), which started 24 h after the start of the
exposure (Fig. 1). Earlier MEA recordin 1s p .rformed at 37°C before, during and after drug exposure
(Zwartsen et al. (2019); (2020)), we. = reanalysed for comparison.

Effects of cocaine and TFMPP wc e tested at 1-100 uM, while MDMA, methamphetamine, and 3-
MMC were tested at 11-10(J3 pM. Concentrations were chosen based on human exposure
concentrations (also see T=1le 2). Vehicle controls (NB-A FBS medium) were included on each plate.
For each experimental condition, primary cultures from 2-4differentisolations were used and tested

in 3-5 plates (Nyj.te). The numberof wells (n,.) represents the number of replicates per condition.

2.4 MEA analysis
MEA data were analysed as described in Zwartsen et al. (2019); (2020). In short, parameters of
interest after acute exposure (30 min) were expressed as a percentage of the parameters prior to

exposure to obtain a treatment ratio for each well (paired comparison;



parameterqposue/ Parametery qqine as % of vehicle control wells). The parameters after prolonged (4.5
h) exposure and recovery (24 h afterthe start of the exposure) were also expressed as a percentage
of the baseline parameters. Next, treatment ratios were grouped per parameter, condition, drug
(e.g., weighted mean spikerate (WMSR), 10 uM 3-MMC) and exposure scenario (acute, prolonged or
recovery).

Qutliers (>mean + 2xSD) for wMSR (4.9%) were used to exclude wells on all parameters. Outliers for
mean burst rate (MBR; 2.1%), and mean network burst rate (MNBR; 1.1%) were used to exclude
wells on specificparameters (burst, network burst and synchronicity ~arameters, or network burst
and synchronicity parameters, respectively). Finally, treatmaen_ “itios of exposed wells were
normalized tothe average treatmentratio of vehicle contrc welis of the corresponding parameter
and exposure scenario. Thereafter, treatment ratios of ex, n< :d wells were averaged per parameter
(e.g. MSR, MBR, MNBR), condition (37°Cor 41°C), d v, ( IDMA, methamphetamine, 3-MMC, TFMPP
or cocaine), and exposure scenario (acuf ., [ "olcaged or recovery) used for further statistical
analyses (see Zwartsen et al. (2019) for more de:ails on parameter descriptions). Neuronal activity

(as % of control) is expressed as mear + 511 0f Nyes from Nppates.

2.5 Cytotoxicity assay

Cell viability was investiga ed L singaNeutral Red (NR) assay as described previously (Repetto et al.
2008), with minor modifir-tions. In short, at DIV9-10, rat cortical cells (4 plates from 2-3 different
cultures) were exposed for 5 h at 41°C to cocaine, MDMA, methamphetamine, 3-MMC, and TFMPP
(final concentrations 1-100 uM (cocaine and TFMPP) or 10-1000 uM (MDMA, methamphetamine,
and 3-MMC) in phenol-red free NB-A FBS medium; see methods part 2.2 Neuronal cultures for
medium components). Thereafter, the exposure medium was changed to fresh NB-A FBS phenol-red
free medium (37°C) before the plates werestored at 37°C, 5% CO,/95% air atmosphere until the cell
viability measurements 24 h after the start of exposure, in line with MEA experiments. At least 20

min before testing cell viability, lysis buffer (1% glacial aceticacid, 49% H,0, 50% ethanol) was added



to non-exposed wells to obtain background values. Following the removal of medium and lysis
buffer, NR solution (Invitrogen, Breda, The Netherlands; 12 uM in phenol-red free NB-A medium w/o
supplements) was added to each well. Following 1 h incubation, the NR solution was replaced with
NR lysis buffer, and the plate was shaken for 20-40 minto lyse the cells. Fluorescence was measured
using a Tecan Infinite M1000 plate reader equipped with a 10 W Xenon flashlight source at 530/645
nm excitation/emission wavelength.

All values were background corrected, outliers were removed in normalized control wells (> mean +
2xSD; 6.8%) and the exposed wells were normalized to the control vai. =s. Following the exclusion of
outliersinthe exposed wells (5.2%), cell viability was expressed a_ =.ean + SEM of n s from Nae..
For detailed information see Zwartsen et al. (2019); (2020), : -om which the cytotoxicity data at 37°C

were re-used.

2.6 Statistical analysis

To make sure the baseline activity at 37°C of cui.dres used to measure subsequent (drug) effects at
41°C was notsignificantly different frc n .1, >se previously measured to determine (drug) effects at
37°C (Zwartsen et al. 2019; 2020), a.> unpaired T-test was used to compare both data sets consisting
of all relevant parameters (Grap:.nad Prism, version 7.04; see supplementals for all parameters).
Next, concentration-effec cun eswere made for MEA and cell viability data using GraphPad Prism.
To calculate 1Cs; values a four-parameter logistic curve with a variable slope was used
(Y=Bottom+(Top-Bottom)/(1+10~((LoglICso-X)*HillSlope))). To determine significant differences
between concentrations and control (at both temperatures), one-way ANOVA’s followed by
Dunnett’s post-hoc tests were used (depicted by * and “ in figure 3). To determine significant
differences between temperatures at specific concentrations (multiple) unpaired T-tests were used
(depicted by ~in figure 3). Unpaired T-tests were also used to determine whether differences due to

temperature in ICs, values were significant (Table 2).



All statistical tests were performed using GraphPad Prism. As the number of wells (n) used in this
study is large, even small changes that are within the level of biological variation can reach
significance. Drug-induced effects on neuronal activity and cell viability were therefore considered
relevant onlyif the effect was statistically significant (p<0.05) and larger than the average variation
of the control experiments (biological variation; > 30% or > 10%, for MEA and viability

measurements respectively).

3. Results

3.1 Neuronal activity at physiological and hyperthermic conditinns

The baseline neuronal activity (all parameters combined) of *he cultures, i.e. before assessing effects
of changes in temperature, did not differ subsequently . ~t'veen cultures measured at 37°C and at
41°C (p=0.84). When temperature increased fron 2/°7 to 41°C during acute (30 min) recordings,
neuronal activity (weighted mean spike "ate (w..1SR), weighted mean burst rate (WMBR), and
weighted mean network burst rate (WMNBR)) wus reduced with 23-29% (Fig. 2). Thisis paralleled by
anincrease in (network) burstinterva v.r. tion coefficients, indicating a more sporadic (network)
burst pattern. Moreover, the (nefw ~rk) oursts are shorter, with spikes within the (network) bursts
occurring at higher rates (Fig. 2).

With the exception of nel vori burst duration (NBD), all parameters of neuronal activity following
prolongedvehicle exposi'r (4.5h) at 41°C were comparable to acute vehicle exposure, whereas for
several neuronal parameters differences were observed between acute and prolonged exposure at
37°C (e.g. the duration and frequency of bursts and network bursts decreased). As a result,
temperature-evoked differences in neuronal activity are evident following prolonged exposure.
Neuronal activity following recovery (19 h recovery, i.e. 24 h after the start of the exposure) at both
temperatures was largely comparable. However, some differences were seen when comparing
recovery measurementsto prolonged exposure measurements. Afterrecovery following exposure to

37°C, the frequency of spike, burst and network burst decreased, while the inter-burst interval (1BI)



and the inter-spike interval within network burst (1SI w NB) increased. After recovery from prolonged
exposure to41°C, comparable effects wereseen, like the decrease in burst rate and the increase in
inter-burstinterval (I1Bl) and the inter-spike interval within network burst (IS w NB). Additionally an
increase in the spike frequency and the network burst duration (NBD) was seen (Fig. 2).

In conclusion, while some (biological) variation in neuronal activity is seen following exposure to
37°C and recovery, a consistentbut modest decrease in neuronal activity (% compared to baseline)
is seen following acute and prolonged exposure at 41°C. Notably, following the recovery period,
neuronal networks exposed to 41°C showed comparable activity “n neuronal networks solely

exposed to 37°C.

3.2 Effect of psychoactive substances on neuronal activity 7t ayperthermic conditions

Most parameters describing neuronal activity we e cc ncentration-dependently affected by drug
exposure and differences were seen betwr en en.peratures. As the wMSR was most sensitive for
exposure athighertemperatures, and a'l other Larameters showed comparable effects (orinversely
proportional effects), only effectsontl e & 1SR are depicted in Fig. 3 (for an overview of effects on
other parameters see Supplemen.. v Fig. 2 and 3).

At 37°C, all substances inhibiteu *he wMSR during acute (30 min) and prolonged (4.5 h) exposure
(Fig. 3, black lines). IC-~ vi 'ues for cocaine and TFMPP were ~10 uM, while ICs, values for the other
drugs were 60-145 uM (T-ale 2). Neuronal activity increased to levels above baseline following
recovery (19 h postexposure, i.e. 24 h afterthe start of the exposure) from exposure to low cocaine
concentrations at 37°C, while higher concentrations recovered to baseline values. Neuronal
networks exposed to high concentrations of MDMA, 3-MMC and TFMPP did not recovercompletely.
Neuronal activity recovered completely following methamphetamine exposure and lower
concentrations of MDMA, 3-MMC and TFMPP.

While neuronal activityisalready reduced at41°C, the increase in temperature further exacerbated

the inhibition of neuronal activity following acute exposure for all drugs (Table 2; Fig. 3, dashed



lines). A close to 2-fold decrease in acute wMSR ICs, values was seen following exposure at 41°C vs.
37°C. Following prolonged exposure and recovery, nosignificant differences were observed between
WMSR ICsy values fordrug exposure at 37°C or 41°C. Neuronal networks exposed at 41°C to cocaine,
MDMA, methamphetamine and 3-MMC tend to recover less from exposure compared to exposure

at 37°C.

3.3 Lack of cytotoxic effects of psychoactive substances at hyperthermic conditions
None of the tested substances reduced cell viability at either 37 « nr 41°C following prolonged
exposure (4.5 h) to, and washout (recovery; 19 h post expos''rc, e. 24 h after the start of the

exposure) from concentrations used for the assessment of ~ffects on neuronal activity (Fig. 4).

4. Discussion

Neuronal activity is an efficient readrcut to nvestigate effects of xenobiotics such as
pharmaceuticals, toxins, (environmental) cher.icals and psychoactive drugs on neuronal function
(Puia et al. 2012; Nicolas et al. 2014; Din, *mans et al. 2016; Vassallo et al. 2017; Strickland et al.
2018; Zwartsen et al. 2018). To rin insight into the influence of temperature on neuronal
functioning, and to relate our re -uits to clinical situations in which drug users often suffer from
hyperthermia, drug-irduc=2d e fects on neuronal activity following exposure at physiological and
hyperthermic conditions *.ere compared. While hypothermia reduces neuronal activity in vitro
(Guatteo et al. 2005), information on the effects of hyperthermia on in vitro neuronal function at
temperatures over 38 °C is scarce. Our data show that, even without drug exposure, neuronal
activity decreases (spike, burst and network burst rate) when the temperature increases from 37°C
to 41°C (Fig. 2).

In the presence of drug exposure, the inhibition of neuronal activity (wMSR) was further
exacerbated ~2-fold at 41°C compared to drug effects at 37°C during acute (30 min) measurements

(Table 2). Exacerbation of drug effects at a higher temperature was most profound for 3-MMC and



methamphetamine, while effects of TFMPP were least affected (Table 2, Fig. 3). While the
exacerbation of effects at a highertemperature was largelyabsent following prolonged (4.5 h) drug
exposure, recovery (19 h post exposure, i.e. 24 h after the start of the exposure) was slightly less
pronounced following exposure at41°C. Additional research into the range of temperatures that can
exacerbate effects on neuronal activity may ultimately reveal athreshold temperature that could be
used for improving the hazard characterization of NPS and illicit drugs.

At 37°C, cocaine, MDMA and TFMPP affected neuronal activity following acute and prolonged
exposure at concentrations relevant for human exposure dui.ng recreational use, while
methamphetamine and 3-MMC did not (Table 2). Fol'n.-g exposure at 41°C, also
methamphetamine affected neuronal activity at expecte. human brain concentrations. Our data
and neuropathological and toxicological data of others ( ~r'aviews see Ginsberg and Busto (1998)
and Kiyatkin (2005)), highlight that temperature i 2 ¢t tical factor influencing effects on neuronal
function and should be considered in hazar 4 a aracterization and risk assessment of psychoactive
substances.

The mechanism(s) by which hyperther nii. fectsneuronal activity is currently unknown. However,
hyperthermia affects many cellu'a. nrocesses that could influence neuronal activity. For instance,
hyperthermia impairs energv mc*apolism and in turn reduces antioxidant defences (Skibba et al.
1991; Flanagan et al. 199¢ Tak 2ya 2001; Dias da Silva et al. 2014; Valente et al. 2016a). In addition,
in vitro studies showed ev= _erbation of cytotoxicity at hyperthermic conditions following exposure
to high drug concentrations (Capela et al. 2006; Valente et al. 2016b), likely initiated by drug-
induced ROS production (Dias da Silva et al. 2014; Valente et al. 2016b). In accordance with the
absence of cytotoxicity in our experiments, cytotoxicity in those studies occurred only following
(very) high concentrations and/or exposures exceeding 24 h, lacking human relevance.

An additional effect of hyperthermia-induced impaired energy metabolism is the accumulation of
adenosine, a metabolite of the energy source adenosine triphosphate (ATP) ( Takeya 2001). Excess

adenosineinturnreduces excitatory synaptictransmission by decreasing glutamate release (Motley



and Collins, 1983; Dunwiddie, 1985; Flagmeyer et al., 1997). Both ROS and adenosine accumulation
may explain the decreased (reversibility of) neuronal activity at hyperthermic conditions vs.
physiological temperatures (Beckhauser et al., 2016; Takeya 2001).

While altered cellular processes at hyperthermicconditions may affect the reversibility of the drug-
induced inhibition of neuronal activity, it is less likely involved in the exacerbation of the acute
inhibition of neuronal activity following drug exposure as drug-induced effects were seen
immediately following exposure. Additionally, the exacerbation is unlikely explained by the overall
reduction of neuronal activity detected at 41°C, as we previous:,; showed that drug-induced
inhibition of neuronal activity isindependent of the activity duriro . ~.eline (see Supplementary Fig.
1inHondebrink etal. (2016)). Although difficult to prove, it = more plausible that the exacerbation
of drug effects at 41°C is caused by temperature-induce 1 =.terations in ion and receptor channel
kinetics and dynamics, like the speed of ion chane: « pening and closing (Robertson and Money
2012), the variation in total current passi'.g 1ro.zgh an open channel (Hille 1978), and altered
binding and gating properties of receptors (Pustlethwaite et al. 2007; Millingen et al. 2008; Gupta
and Auerbach 2011).

In vivo, the protective function of (e biood-brain barrier (BBB) decreases at higher temperatures
and following drug exposure (Si.~rma et al. 2009; Turowski and Kenny 2015; Kiyatkin and Sharma
2016). As the resultine ir'pail 2d BBB could lead to higher brain concentrations of psychoactive
drugs, the ~2-fold exacer* ation of the neuronal effects at 41°C that we observed in our in vitro
model lacking a BBB could be even higher in patients.

In summary, exposure at hyperthermic conditions exacerbates the inhibition of neuronal activity
following exposure to several psychoactive substances. This highlights the need to include
temperature as a critical factor in future hazard assessment of illicit drugs and NPS and the need to

closely monitor temperature of intoxicated patients.
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Fig. 1. Schematic illustration of recordings of neuronal activi., at physiological (blue; 37°C) and hyperthermic

temperatures (orange; 41°C).
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SEM. Effects <30% (i.e. the variation of vehicle control) are considered not to be of (toxicological) relevance (depicted by
the greyarea). Relevant effects that are statistically different from control (p<0.05) are indicated with * for 37°Cand with #

for 41°C. * represents concentrations at which effects differed significantly between 37°Cand 41°C.
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Table 1. Characteristics of the tested drugs.

Drug ‘

IUPAC name

‘CAS‘

number

Purity

Source

1-(1,3-b dioxal-5-yl)-N-methyl -

MDMA (1,3-benzo 'Dx;’_am"ig‘e MEMYIPIOPANT - 42542.10-09 | >98.5% Lipomed
p-methamphetamine | (2S)-N-methyl-1-phenylpropan-2-amine 537-46-2 > 98.5% Lipomed

3-MMC Z-(methylamino)-1-(3-ethylphenyl) | o/ co1c o5 | 5 98.5% Lipomed

propan-1l-one
TFMPP 1-[3-(trifluoromethyl) phenyl]piperazine 15532-75-9 > 98.5% Lipomed
) methyl(15,3S,4R,5R)-3-benzoloxy-8-methyl- o .
Cocaine 8-azabicyclo[3.2.1] octane-4-carboxylate >0-36-2 > 98.5% SpruytHillen

Table 2. Inhibition of neuronal activity by psychoactive substances at physic ngica (37°C) or hyperthermic conditions

(41°C) compared to the estimated human brain concentration ([brain]). |Cs valu :s not within orclose to the estimated

humanbrain concentration are highlighted ingrey. |Cs, valueswith 95°” -~n, Hdence intervals [Cl] for the wMSR after acute

(30 min) and prolonged exposure (4.5 h), and following recovery (19b 1. 24 h afterthe start of the exposure)areshown.

* |ndicates a significant difference (p<0.05) between41°Cand {7°C. ‘Zwartsenetal. (2018), ®:Hondebrink et al. (2018), =

Zwartsen et al. (2020).
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Highlights:

In the absence of drugs, hyperthermic conditions decreased neuronal activity
Psychoactive drugs inhibit neuronal activity at physiological temperatures

At 41°C, drug-induced inhibition of neuronal activity was exacerbated

Cell viability was unaffected following drug exposure at 37°C and 41°C

Hyperthermic conditions should be included in neurotoxic hazard assessment
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