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Introduction

Microelectrode array (MEA) recordings are a useful tool to 
study the activity of networks of interconnected neurons, 
both in vitro and in vivo. In vitro, neural networks on MEAs 
demonstrate many characteristics of intact neural networks; 
this includes extracellular recordings of action potentials 
(“spikes”) and groups of action potentials (“bursts”) simul-
taneously from multiple points in the network.1 The sponta-
neous activity in these networks exhibits pharmacological 
responsiveness and plasticity.2–5 Thus, primary cultures of 
neural networks on MEAs have been widely utilized to 
study neurophysiology, neuropharmacology, and neurotoxi-
cology (for review, see Johnstone et al.6). In addition, the 
ontogeny of network activity on MEAs has been described 
by numerous different laboratories.4,7–10 Until recently, 
however, the throughput of MEA devices has been limited, 
such that it was not possible to study more than a small 
handful (e.g., four to six) of networks at a time.

Recently, two manufacturers of MEA devices have intro-
duced multiwell MEA (mwMEA) devices, which allow for 
recordings to be made from 12–96 wells simultaneously, 
with 8–64 electrodes/well. The increase in throughput 

offered by mwMEA devices expands the capabilities of 
MEA systems, allowing for drug and toxicant screening.11,12 
Further, when combined with cultures that have undergone 
genomic manipulation13,14 or with patient-derived inducible 
pluripotent stem cells,15,16 mwMEA recordings have been 
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Abstract
We examined neural network ontogeny using microelectrode array (MEA) recordings made in multiwell MEA (mwMEA) 
plates over the first 12 days in vitro (DIV). In primary cortical cultures, action potential spiking activity developed rapidly 
between DIV 5 and 12. Spiking was sporadic and unorganized at early DIV, and became progressively more organized 
with time, with bursting parameters, synchrony, and network bursting increasing between DIV 5 and 12. We selected 12 
features to describe network activity; principal components analysis using these features demonstrated segregation of data 
by age at both the well and plate levels. Using random forest classifiers and support vector machines, we demonstrated that 
four features (coefficient of variation [CV] of within-burst interspike interval, CV of interburst interval, network spike rate, 
and burst rate) could predict the age of each well recording with >65% accuracy. When restricting the classification to a 
binary decision, accuracy improved to as high as 95%. Further, we present a novel resampling approach to determine the 
number of wells needed for comparing different treatments. Overall, these results demonstrate that network development 
on mwMEA plates is similar to development in single-well MEAs. The increased throughput of mwMEAs will facilitate 
screening drugs, chemicals, or disease states for effects on neurodevelopment.
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used to describe how network function is affected by dis-
ease states. Finally, mwMEAs offer the ability to screen 
large numbers of chemicals for potential effects on develop-
ing networks.17,18 Given the significant public concern over 
the potential role of chemicals in neurodevelopmental dis-
eases,19 the study of chemical effects on the early stages of 
neural network ontogeny using mwMEAs offers a func-
tional measure for developmental neurotoxicity hazard 
characterization.

However, in order for such studies to take place, the 
basic development of activity in networks on mwMEAs 
needs to be described in detail. In lower-throughput MEA 
systems, neural network development has been demon-
strated to transition from low activity at early developmen-
tal ages (e.g., the first week in vitro) to one of coordinated 
bursting, network spikes, and synchrony at later time points 
(e.g., the second week in vitro and beyond). While it is 
expected that such properties will be retained in multiwell 
systems, it remains to be demonstrated, and the time-course, 
variability, and other characteristics defined. Further, while 
single-well MEAs contain ~60 microelectrodes, only 
12-well mwMEA plates have an equivalent number (64/
well), and the extent to which network properties can be 
defined with fewer electrodes has not been determined.

The present studies describe the development of net-
works of mixed primary cortical cultures in 48-well 
mwMEA plates containing 16 microelectrodes/well. These 
cultures were prepared from newborn rat cortex and contain 
excitatory and inhibitory neurons as well as glia.20,21 Over 
the first 2 weeks in vitro, the neurons extend axons and den-
drites,22 form synapses,23 and, in single-well MEA systems, 
develop spontaneous network activity.17 The present studies 
characterized the early ontogeny of activity of these cul-
tures in mwMEAs by describing the firing, bursting, syn-
chrony, and network spike properties over the first 12 days 
in vitro (DIV), as previous studies with this culture model 
have shown that a significant change in the rates and pat-
terns of activity occurs over this time frame. Further, we 
sought to evaluate the utility of analysis of multiple features 
of network activity as a method to determine the ability of 
classification approaches to distinguish between cultures 
under different conditions (e.g., control vs drug/toxicant 
treatment, different ages, or genetically modified vs 
wild-type).

Methods

Experimental Protocol

Cell culture.  All procedures using animals were approved by 
the National Health and Environmental Effects Laboratory 
Institutional Animal Use and Care Committee. Primary cul-
tures were prepared from the cortex of 0–24 h old rat pups 
as described previously.11,20,21 Cells were plated (1.5 × 105 

cells in a 25 µL drop of media) onto the surface of 48-well 
MEA plates (16 electrodes/well) that had been precoated 
with polyethylenimine (PEI) and laminin as previously 
described.11 The resultant cultures contain excitatory and 
inhibitory neurons and glia (Suppl. Fig. 1).

MEA recordings.  Spontaneous network activity was recorded 
using Axion Biosystems Maestro 768 channel amplifier and 
Axion Integrated Studios (AxIS) v1.9 (or later) software. 
The amplifier recorded from all channels simultaneously 
using a gain of 1200× and a sampling rate of 12.5 kHz/
channel. After passing the signal through a Butterworth 
band-pass filter (300–5000 Hz), online spike detection 
(threshold = 8× rms noise on each channel) was done with 
the AxIS adaptive spike detector. On DIV 5, 7, 9, and 12, 
plates were placed into the Maestro amplifier and allowed 
at least 5 min to equilibrate, after which at least 15 min of 
activity was recorded. As the majority of these plates were 
used on or around DIV 14 for other experiments, short 
equilibration and recording times (~30 min total) were 
selected to minimize the potential impact of repeated 
removal of cells from the incubator over the time period 
during which activity was developing. All recordings were 
conducted at 37 °C, and since development of activity was 
being studied, there were no a priori thresholds for mini-
mum numbers of active electrodes for inclusion of a well in 
the data set.

Data

Recordings were made from 656 wells across 16 MEA 
plates from 15 primary cortical cultures at DIV 5, 7, 9, and 
12 for a total of 64 “plate recordings.” A recording of one 
plate at DIV 12 was missing from our data set, and one 
recording at DIV 7 was also excluded from the analysis, as 
its mean firing rate (MFR; 1.2 Hz) was greater than 2 SD 
above that of the other DIV 7 plates (mean = 0.6 Hz, SD = 
0.3). This resulted in a total of 62 plate recordings, with a 
total of 2976 well recordings, used in our analysis. Activity 
was usually recorded for 15–30 min; only the last 15 min of 
each recording was analyzed. Features related to spikes, 
bursts, network spikes,24 and correlations25 were extracted 
in the R programming environment v3.0 using two open-
source R packages, SJEMEA and MEADQ, and compiled into 
a well-level data set. Bursts were detected using an implemen-
tation of the MaxInterval method by Neuroexplorer, with the 
following threshold parameters: maximum interspike interval 
(ISI), 0.25 s; maximum beginning ISI, 0.1 s; minimum 
interburst interval (IBI), 0.8 s; minimum burst duration, 
0.05 s; and minimum number of spikes in a burst, 6. 
Network spikes were identified by dividing the recording 
period into 3 ms bins and determining the number of elec-
trodes in the well that fired at least one spike during each 
bin; the minimum threshold for a network spike was for 
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spike activity to be present on at least five electrodes in a 
given time bin. Correlation was measured using the spike 
time tiling coefficient, which was defined as
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where P1 is the proportion of spikes on electrode 1 that 
occur within ±∆t  of a spike on electrode 2, and T1 is the 
fraction of the total recording time that lies within ±∆t  of a 
spike on electrode 1. P2  and T2  are the equivalent values on 
electrode 2. Data files generated by AxIS were converted 
into HDF5 file format;26 HDF5 files, scripts to generate the 
features, and related R objects are stored in a public reposi-
tory (http://github.com/sje30/EPAmeadev). The goal of 
establishing a public data set is to allow full reproducibility 
of our analysis and/or to allow novel analyses to be 
conducted.

Developmental Analysis

Twelve features were chosen to describe the culture activ-
ity, which are summarized in Table 1. For all features, the 
plate value was taken as the median of all nonzero well val-
ues on the plate (zero values were ignored).

PCA

We performed principal components analysis (PCA) using 
the R package FactoMineR27 using all wells and all 12 fea-
tures. Two PCAs were performed. The first PCA was con-
ducted using data in which a well constituted one 
observation, while the second PCA was conducted using 
data in which a plate median constituted an observation. For 
each PCA, the 12-dimensional feature vector was projected 
down onto the plane created by the first two principal com-
ponents dimensions. The purpose of the projection was to 
visually assess the level of differentiation among the four 
ages. A scree plot was made to describe the cumulative per-
cent of variation explained by the use of additional principal 
components to describe the data. The scree plots aid in 
quantifying the extent to which data may be well repre-
sented with fewer dimensions.

Classification

Classification was performed to understand whether and to 
what extent the features chosen above could distinguish 
between networks with different characteristics (e.g., control 
vs compound treated). Since this data set did not contain net-
works treated with compounds, our classification examined 
the ability of the chosen features to discriminate between net-
works of different ages. Two classification techniques, random 
forests and support vector machines (SVMs), were used to 

predict the age of each well based on the 12 features used in 
our analysis. In some cases, due to the low number of elec-
trodes on a well, lack of bursting, or lack of network spike 
activity, some feature values were missing; this was particu-
larly evident at early DIV. For classification purposes, for those 
wells with no bursts, the within-burst firing rate and burst dura-
tion were set to zero. Similarly, the network spike peak and 
duration were set to zero for all wells that exhibited no network 
spikes over the recording period. Any wells that had null val-
ues for the remaining features, namely, correlation, CV of IBI, 
and CV of within-burst ISI, were excluded from the classifica-
tion. This resulted in 370/2976 well recordings, or approxi-
mately 12.4% of the total wells, being excluded from the 
classification.

Initially, classification was performed on the remaining 
data using a random forest model and all 12 features. The 
relative importance of each of the features was determined 
based on the amount they reduced the Gini index. Next, 
SVMs were used to examine the classification accuracy 
obtained by using various subsets of the total 12 features. 
This four-class classification problem was addressed using 
the “one-against-one” approach,28 which involved building 
six binary SVMs, one for each pairwise combination of 
ages. Each of these SVMs were then used to binarily clas-
sify every data point, and the class to which each point was 
most frequently assigned across the six SVMs was taken as 
its correct class. A radial kernel was chosen over linear and 
polynomial kernels for the SVMs because of its superior 
classification accuracy on our data. The optimal regulariza-
tion parameter values for the radial kernel were found by 
conducting a grid search across a range of values using 
10-fold cross-validation on the entire data set. The parameters 
were chosen as those that maximized the cross-validation 

accuracy, which were γ =
1

10
 and C = 10.

In both types of classification, two-thirds of the data 
were used as a training set and the remaining third used to 
test the classification accuracy of the model. The classifica-
tion was repeated 100 times using random choices of the 
training and test sets in each iteration, and the classification 
accuracy averaged over the 100 repetitions.

Results

Developmental Profile

On DIV 2, only rare, individual spikes were recorded (data 
not shown). Spontaneous activity in the neural networks 
arose and could be reliably recorded beginning on DIV 5 
(Suppl. Fig. 2). Activity as assessed by most of the param-
eters used here increased with DIV. In particular, not only 
did spiking increase with time, but the organization of spik-
ing into bursts and correlated activity across the network 
(Suppl. Fig. 2) also increased with DIV. Quantification of 
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the changes in activity over development was achieved 
using a selection of 12 measures (Fig. 1), which were used 
to describe activity at the level of the entire well or indi-
vidual electrodes, which were then aggregated into well-
level values by taking the median.

Spontaneous firing rate.  In general, activity increased over 
development, with the mean firing and burst rates both 
monotonically rising with increasing DIV (Fig. 1A,B).

Bursting activity.  A clear increase in bursting activity with 
increasing culture age was also observed. Although burst 
duration did not show strong developmentally related 
changes (Fig. 1C), the fraction of bursting electrodes, 
within-burst firing rate, and percentage of spikes occurring 
within bursts all increased over development (Fig. 1D–F). 
The CV of IBIs and within-burst ISIs also increased with 

development, indicating a decrease in the regularity of these 
features (Fig. 1G,H).

Synchronous activity.  The synchrony of activity within each 
individual well on a plate was examined using a feature 
called network spikes. Network spikes were defined as 
short time intervals in which the number of active elec-
trodes on the well exceeded a threshold value, and their 
rate, duration, and peak number of active electrodes were 
quantified for each plate (Fig. 1I–K). The frequency of net-
work spikes increased with increasing developmental age. 
To a lesser extent, an increase in the network spike peak 
(the maximum number of electrodes active during a net-
work spike out of a possible 16) was also observed across 
development.

As another measure of network synchrony, we calcu-
lated the mean of all pairwise correlation coefficients for all 

Table 1.  Features Used in Our Analysis and a Brief Description of How They Were Calculated.

Feature Description

MFR The MFR on each electrode was calculated. The well value was the median value of all 
active electrodes.

Burst rate The number of bursts per minute on an electrode was calculated. The well value was the 
median value from all electrodes that exhibited bursting behavior.

Burst duration The mean duration of all bursts on an electrode over the recording period was calculated. 
The well value was the median value from all electrodes that exhibited bursting 
behavior.

Fraction of bursting electrodes An electrode was classified as bursting if the burst rate on the electrode was at least one 
per minute. The well value was the number of electrodes classified as bursting as a 
fraction of the total number of active electrodes on the well.

Within-burst firing rate The mean firing rate within all bursts on an electrode was calculated. The well value was 
the median value from all electrodes that exhibited bursting behavior.

Percentage of spikes in bursts The number of spikes on an electrode classified as being within bursts divided by the 
total number of spikes on the electrode. The well value was the median value from all 
electrodes that exhibited bursting behavior.

Coefficient of variation (CV) of IBI The ratio of the standard deviation to the mean of the length of all IBIs on an electrode. 
The well value was the median value from all electrodes that exhibited bursting 
behavior.

CV of within-burst ISIs The ratio of the standard deviation to the mean of the length of all ISIs within bursts on 
an electrode. The well value was the median value from all electrodes that exhibited 
bursting behavior.

Network spike rate The well value was the number of network spikes on the well per minute of the recording 
period (see Methods section for definition of a network spike).

Network spike duration The duration of a network spike was defined as the length of time during which the 
number of active electrodes on the well exceeded the threshold value (5). The well 
value was taken as the median duration of all network spikes on the well during the 
recording period.

Network spike peak The maximum number of active electrodes during each network spike. The well value was 
taken as the median peak value of all network spikes on the well during the recording 
period.

Mean correlation The correlation between every pairwise combination of electrodes on a well was 
calculated using the spike time tiling coefficient25 with ∆t = 50 ms (see Methods section 
for definition). The well value was the mean of the pairwise correlations between all 
distinct electrodes on the well.
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electrodes in a well, using the spike time tiling coefficient.25 
Correlations strengthened over development, particularly at 
early ages (Fig. 1L).

PCA

A PCA was undertaken to visualize the level of differen-
tiation among the four culture ages. The wells projected 
onto the first two PC dimensions (Fig. 2A) show a sto-
chastic organization starting from the earliest age (red, 
DIV 5) progressing through to the oldest age (purple, DIV 
12). The progression in age is roughly aligned with the 
first PC dimension, which accounts for more than 50% of 
the variation (Fig. 2B). To quantify the relationship 
between PC dimension 1 and culture age, PC1 was 
regressed against culture age. The linear model results 
showed that PC1 increases with increasing culture age  
(p value of slope < 0.001; Suppl. Fig. 3). This means that 
the principal mode of variation corresponds to the differ-
ence in ages of the cultures. Moreover, all factor loadings 
are positive on the first PC dimension, meaning that an 
increase in PC1 is associated with an increase in all 12 
variables. Another salient aspect of the PC projection is 

that variation appears smaller at earlier ages. Similarly, the 
projection of the plate medians onto the first two PC 
dimensions yields a rough segregation by DIV. As in the 
well-level PCA, at the plate level, DIV are aligned with 
the first PC dimension (Fig. 2C), revealing a consistent 
age-related characteristic of the data. A greater percentage 
of variability is captured by the first PC dimension (67%; 
Fig. 2D) compared with the well-level PCA, related to the 
fact that taking the median reduces well-to-well variabil-
ity. Both PCAs display sufficient visual differentiation 
between observations by DIV that a more thorough quan-
tification of this separation is warranted through classifi-
cation techniques.

Classification

Classification techniques were used to determine the degree 
to which the recordings could be separated into their ages 
using the features specified above. First, a random forest 
model was built and used to predict the age of each well, 
using the 12 features from our analysis. The model was 
built using two-thirds of the data as a training set and its 
accuracy determined by using the remaining one-third of 

Figure 1.  Mean firing (A) and burst rates (B) increase with development. Box plots showing median and interquartile range are 
shown for n = 16 plates. (C) Burst duration. (D) Fraction of bursting electrodes. (E) Within-burst firing rate. (F) Percentage of spikes 
in bursts. (G) CV of IBI. (H) CV of within-burst ISI. (I) Network spike rate. (J) Network spike duration. (K) Network spike peak. (L) 
Mean pairwise correlation.
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the data as a test set. When used to predict the age of each 
well from the four possible ages, the accuracy of the ran-
dom forest model, averaged over 100 trials, was approxi-
mately 72% (compared to the 25% accuracy that could be 
expected by chance).

From these random forest models, we were also able to 
determine the relative importance of each of the features in 
driving the classification (Table 2, “Importance” column). 
The two most important features were those measuring 
coefficients of variation, namely, the CV of within-burst ISI 
and the CV of IBI. In our developmental analysis, these two 
features both exhibited a monotonically increasing trend 
with age.

Next, we used SVMs to quantify the degree to which 
recordings could be classified correctly by age when only a 
subset of our features was used. The SVM classifier, built 
using the same proportion of training and test sets specified 

above, had a slightly higher level of accuracy, of approxi-
mately 73%, compared to the random forest model using all 
12 features. Using the ordering of feature importance found 
above, we were then able to analyze how prediction accu-
racy varied as the number of features was reduced. Table 2 
shows the performance of the SVM as the number of fea-
tures used in the classification was gradually reduced from 
12, in the bottom row, to just 1, CV of within-burst ISI, in 
row 1. In general, we found that the classification accuracy 
remained high (~70% or higher) as the number of features 
was reduced. However, four features (burst rate, network 
spike rate, CV of IBI, and CV of within-burst ISI) were 
required to maintain a prediction accuracy of ≥65% (Table 
2, “Accuracy %” column).

We used a similar method to examine the extent to which 
each pair of ages of arrays could be separated using classi-
fication techniques. In this case, rather than using all of the 

Figure 2.  (A) Well-level PCA projection of 12-dimensional feature vectors onto PC dimensions 1 (x axis) and 2 (y axis). Each 
dot represents a well, colored by DIV of recording. Rough ordering from youngest (red, DIV 5) to oldest (purple, DIV 12) wells 
is apparent in change of colors along the positive direction. (B) Scree plot displays percent variance explained by the number of 
PC dimensions. (C) Plate-level PCA projection of plate medians onto PC dimensions 1 (x axis) and 2 (y axis). As in the top, rough 
ordering of observations by DIV is apparent in the red-to-purple transition along the x axis. (D) Scree plot of plate-level PCA. 
Compared to the well-level PCA scree plot, a larger amount of variation is captured in the first two PC dimensions, indicating that 
taking the plate median reduces variability.

 at US EPA Library on March 29, 2016jbx.sagepub.comDownloaded from 

http://jbx.sagepub.com/


Cotterill et al.	 7

data in the classification, the SVM classifier was built sepa-
rately on each pairwise combination of ages. The classifier 
was most accurate in distinguishing arrays with large differ-
ences in age, for example, DIV 5 and 12 arrays, for which 
only the top feature, CV of within-burst ISI, was required to 
achieve almost 92% prediction accuracy (Table 3). 
Classification performance was poorest for pairs of arrays 
in which the age difference was low. For example, the pre-
diction accuracy for distinguishing DIV 9 from DIV 12 
arrays was only just above chance when using one feature. 
Using all features improved the ability to distinguish 
between closely related ages to ~82%–83%, which is well 
above chance (Table 3).

How Many Wells Are Needed?

In our experiments, we have used all 48 wells on a plate as 
replicates of the same experimental condition. This is a conser-
vative way of using the multiwell array, and an alternative, 
higher-throughput approach might be to use different wells for 
different experimental conditions. However, there is inevitably 
a trade-off between the number of experimental conditions 
tested and the number of replicate recordings of conditions 
when assigning conditions to wells on a plate.

We therefore sought to investigate how robust our results 
were if fewer wells were used to form a signature of activity 
at a given age. Intuitively, we expected that with fewer 
wells, we would get less reliable signatures of activity, and 
hence poorer classification. Rather than run experiments 
where fewer wells were used, we simulated the experiments 
by randomly removing all data for a given number of wells 

on each of the 16 plates, and then repeated our classification 
tests to see how well each age could be discriminated. 
Figure 3 shows that classification accuracy remained above 
60% with as few as four wells per plate. With 16 wells (one-
third of normal), the classifier accuracy is close to the stable 
value. For our particular question then of discriminating the 
four ages, we could get reliable results using one-half (24 
wells) or one-third (16 wells) of the data that we generated 
for each plate.

Discussion

The present results describe the ontogeny of network activ-
ity in 48-well MEA plates during the first 12 DIV. The 
results demonstrated a rapid ontogeny of spiking, bursting, 
synchrony, and network spiking activity over this period of 
time, which is similar to the ontogeny of activity in single-
well MEAs. Furthermore, these results demonstrate that by 
considering multiple parameters of network firing, bursting, 
and synchrony properties, PCA and classification methods 
can be used as reliable predictors of network age at both the 
plate and well levels. These results demonstrate that the 
neural network ontogeny on mwMEAs offers, relative to 
single-well systems, a high-throughput approach to study 
network development and its perturbation by drugs, chemi-
cals, and disease.

Previous studies of cortical and hippocampal network 
ontogeny have demonstrated that activity begins with ran-
dom, single spiking on a single or few channels, and over a 
period of 2–3 weeks in vitro progresses to bursting activity 
that becomes more synchronous with time.4,7–10,29 This is 
accompanied over time by the emergence of network bursts. 
Similar to previous data from our laboratory using single-
well MEA “chips” where cells were seeded at a high den-
sity,17 the ontogeny of spiking and bursting activity occurred 
rapidly within the first 2 weeks in vitro, specifically between 
DIV 5 and 12 in the present study. Our data are consistent 
with those of other laboratories that have reported initiation 
of spiking activity as early as 3–6 DIV.7,30 While our data 
describe the initial stages of the ontogeny of network activ-
ity, we did not examine ages beyond DIV 12 in the current 
study, and cannot rule out that some features examined may 
continue to “mature” with additional time in culture. 
Further, the ontogeny of network development in the cul-
ture used here does occur earlier than has been reported by 
other laboratories.18,31–33 Factors that may influence these 
differences include the age at which the cells were isolated 
(postnatal day 0 here vs embryonic day 18 in other studies), 
as well as the plating density (150,000 cells here vs 50,000 
in other studies).8,11 This more rapid development of net-
work activity may have some benefits from a screening 
standpoint, as it could shorten assay times, increase through-
put, and reduce costs, although ultimately, the screening 
needs of the user will dictate issues such as culture model 

Table 2.  Classifier Performance at Predicting the Age of 
Arrays.

Feature Importance Accuracy %

CV of within-burst ISI 1.00 49.2
CV of IBI 0.70 58.3
Network spike rate 0.50 62.0
Burst rate 0.49 65.0
Burst duration 0.44 66.0
% spikes in bursts 0.39 68.3
Correlation 0.36 69.5
Firing rate 0.35 71.4
Within-burst firing rate 0.31 72.7
Bursting electrodes 0.22 73.0
Network spike duration 0.18 73.5
Network spike peak 0.09 73.4

Features are listed in decreasing order of importance, based on the 
importance score in column 2, derived from random forest classification 
and normalized to the top score. The value in each row n = 1, …, 12 
of column 3 is the mean percentage of correct classifications using 
the top n features in the SVM model. For example, row 4 shows that 
the classifier was 65.0% accurate at predicting age using the top four 
features.
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and plating density. Regardless of the rate of network ontog-
eny, the approaches described herein can be applied to the 
resultant data, and in the present case, it appears that net-
work ontogeny can be reliably predicted by using as few as 
three to five wells per plate by considering all of the 
parameters.

The use of classification techniques such as random forests 
and SVMs indicated that the parameters extracted from the 
spike trains in these experiments could be used to predict reli-
ably the age of the culture from between the four different age 
categories examined. While the models performed best when 
all of the parameters were used to aid classification, several 
parameters had greater influence on the ability to predict cul-
ture age. These included the CV of within-burst ISI, CV of IBI, 
mean burst duration, network spike rate, and burst rate. When 
these approaches were used to predict between two different 
ages, considering all of the parameters resulted in greater accu-
racy regardless of age. This indicates that using multiple 
parameters will provide more robust discrimination of differ-
ent ages (or perhaps treatments) than relying on a single or a 
few parameters. The greatest accuracy was achieved when pre-
dicting between larger age differences (e.g., DIV 5 vs 12) and 
likely reflects the relative lack of bursts, network spikes, and 
correlated activity in DIV 5 cultures. This is consistent with the 
relative lack of connectivity in DIV 5 cultures. Synaptogenesis, 
as reflected morphometrically by the juxtaposition of pre- and 
postsynaptic markers in this model, begins around DIV 6 and 
continues through DIV 12.23 Thus, the initiation of structural 
evidence of synaptogenesis corresponds nicely with increases 
in electrophysiological parameters on DIV 7, including those 
parameters reflecting connectivity (bursts, network spikes, and 
correlated activity).

The present analysis has implications for using mwMEAs 
for drug development or chemical developmental 

neurotoxicity screening. Both classification approaches used 
here provided higher accuracy by including more features. 
Traditionally, MFR has been widely utilized to describe drug- 
or chemical-induced alterations in network function,2,6,11,12,18 
as it is easily extracted from the data. However, when possible, 
determining more features and using them collectively, rather 
than focusing on one or a few features, may provide greater 
sensitivity in detecting effects, as well as possibly facilitating 
drug or chemical “fingerprinting” approaches.34 In addition, 
the classification approaches used here indicate that age of a 
network can be reliably determined using 3–8 wells from each 
plate, indicating that between 6 and 16 different treatment con-
ditions might be possible on a given 48-well mwMEA plate. 
We believe our study is the first to assess the important ques-
tion of how to efficiently use wells on a mwMEA, suggesting 
that as few as three to eight wells might suffice to form a reli-
able pattern of activity. However, this range should be treated 
with caution: as can be seen from Figure 3, there is in increas-
ing variance with fewer wells, and more importantly, results 
are likely to differ depending on the size of the effect being 
measured. Our findings suggest that where there are gross 
changes in activity patterns, fewer wells are needed. On the 
other hand, where changes in activity are more subtle, we 
would expect more replicates to be required. Our recommen-
dation therefore is that investigators should repeat our sam-
pling approach (Fig. 3) to investigate how reducing the number 
of wells per condition can affect the reliability of results.

One factor that influences results from MEAs is the culture-
to-culture variability. Although this was not specifically 
addressed in the present study (typically only one plate was 
available from a given culture), evidence from another data set 
wherein three plates each were analyzed from several different 
cultures indicated that culture-to-culture variability is much 
greater than plate-to-plate variability (unpublished data). Thus, 

Table 3.  Classifier Performance at Predicting the Age of Arrays for Each Pairwise Combination of Ages (DIV).

Accuracy %

Feature 5 vs 7 5 vs 9 5 vs 12 7 vs 9 7 vs 12 9 vs 12

CV of within-burst ISI 75.0 87.5 91.8 69.9 78.1 57.4
CV of IBI 77.4 89.5 93.6 76.8 85.5 64.7
Network spike rate 79.3 90.3 95.5 79.6 88.0 68.7
Burst rate 79.3 90.3 95.3 81.0 88.4 72.8
Burst duration 79.7 90.8 95.3 81.0 88.6 74.0
% spikes in bursts 81.6 91.3 95.6 81.5 90.4 76.4
Correlation 82.2 92.1 95.6 82.3 90.9 77.1
Firing rate 82.3 91.7 95.7 82.3 90.9 80.2
Within-burst firing rate 84.2 92.7 96.2 82.4 91.3 81.2
Bursting electrodes 83.6 92.5 96.2 82.6 91.8 81.5
Network spike duration 83.7 92.9 96.8 82.9 92.8 82.0
Network spike peak 82.2 92.5 96.8 82.6 93.0 82.1

Features are listed in decreasing order of importance, and the value in each row n = 1, …, 12 is the mean percentage of correct classifications using 
the top n features, as described in Table 2.
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obtaining replicate values for different treatments (e.g., con-
centrations of a drug or chemical) across several different wells 
and plates from the same culture (e.g., see supplemental mate-
rial in Wallace et al., 201535) may be preferable to obtaining 
replicate values across several different cultures. It is likely 
that the use of a primary culture model does contribute to the 
culture-to-culture differences, as each culture is prepared from 
different animals. This may in the future be improved by the 
use of stem cell–derived models, which should, in theory, be 
more homogeneous.

In conclusion, we have described the early development 
of neural networks grown in 48-well mwMEA plates and 
found that it is qualitatively equivalent to development of 
network activity in single-well MEAs. Furthermore, multi-
parametric evaluation of the network activity parameters 
provides an accurate method of classifying networks by 
age. Together, these results indicate that neural networks 
cultured on mwMEAs will be a useful tool to study the 
ontogeny of network activity, as well as the potential for 
drugs, chemicals, and diseases to disrupt that activity.
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