Cation Chloride Cotransporter Modulation of the Seizure Phenotype in Rat Cortical MEA

Prasad Purohit, Matthew Cato and Khuram Chaudhary In vitro Safety Pharmacology, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville PA 19426

1. Abstract

The Cation chloride cotransporters (CCCs) mediate neuronal intracellular chloride levels and are therefore involved in regulating inhibitory tone in CNS. Modulators of CCCs are also reported to affect GABA_A-R-induced inhibition. Mutations of CNS-specific subtypes KCC2 (extrudes Cl⁻) and NKCC1 (pumps in Cl⁻) are reported in epileptic disorders. The present study was conducted therefore to test if VU0240551 (KCC2 inhibitor) affected drug-induced seizure endpoints in our rat cortical phenotypic Multi Electrode Array (MEA) assay, and to correspondingly confirm the lack of direct action of VU0240551 on GABA₄-Rs using whole cell patch clamp. In CNS MEA assay, picrotoxin (GABA₄-R antagonist) application primarily altered the spontaneous electrical activity for network burst frequency, organization and synchrony metric endpoints. The study was conducted by culturing cryopreserved rat brain cortex cells (RCX-500, Lonza) on MEA plates (48-well Accuspot, Axion) for two weeks and treated either with DMSO (0.1%; n = 12 wells), VU0240551 (0.12-10 μ M; n = 3 wells/concentration) or picrotoxin (3 μ M, n = 6 wells) on Day 15. Thirteen endpoints (firing/burst rate and connectivity/organization/synchrony endpoints) were analyzed to compare the treatments. The activity of VU0240551 against respective controls in agonist/antagonist/PAM modes were examined on hGABA_A-Rs (α 1 β 3 γ 2) stably expressed in HEK293 cells using IonFlux automated patch clamp platform (n \geq 3). In MEA assay, VU0240551 decreased both firing rate and synchrony (10 µM), thus showing anti-seizurogenic effects. When co-applied, VU0240551 mitigated picrotoxin-induced seizurogenic endpoints compared to picrotoxin application alone. In IonFlux assay, VU0240551 showed no activity in all three pharmacological modes on hGABA_A-Rs within the concentration range tested; (IC₅₀ or EC₅₀ > 100 μ M). In conclusion, the data suggested that VU0240551 produced an anti-seizurogenic effect that is mediated via KCC2 inhibition. In general, GABA₄-R-mediated effects in a phenotypic seizure-liability MEA assay can be influenced by a mechanism involving cation chloride cotransporter modulation.

2. Background

- Many clinically reported undesired effects are associated with CNS.
- These (Table 1) are among the effects least studied/predicted preclinically.
- MEA platform combined with primary cells and iPSCderived neuron/astrocytes has been an evolving technique to address the Seizure liability.
- Voltage-gated Na⁺, K⁺ or Ca⁺⁺ ion channels, ligandgated NMDA and GABA^A channels are not always enough to explain observed seizurogenic effects.
- Increasing evidence on Cation-Chloride Cotransporters (CCCs) suggest their role in seizurogenic activity.
- 7 out of 9 CCCs are plasmalemmal ion transporters: 2 NKCCs; 1 NCC and 4 KCCs.
- All CCCs, except for NKCC2 and NCC are expressed in specific cell type, brain region, developmental stages, or pathophysiological condition (epilepsy).
- **NKCC1**: two isoforms, a and b; a is expressed primarily in the brain; pumps Chloride ion into the cell.
- KCC2: two isoforms, a and b; expressed in the plasms membrane of somata and dendrites on pyramidal neurons and interneurons from the hippocampus and neocortex; pumps Chloride ion out of the cell.

Table 1. Major adverse effects associated with the clinical use of drugs

Figure 1. Chloride concentration regulatory mechanisms underlying GABA_A receptor-mediated responses in immature and mature CNS neurons. The relative activity of NKCC1 and KCC2 and their contrasting effects on intracellular chloride determines the value of E^{CI-} relative to the membrane potential (V_m) (Liu et al 2020).

5. IonFlux

VU0240551 mediated activation of hGABA (c193y2) current expressed in HEK293 cells (IonFlux)

В VU0240551 mediated inhibition of hGABA (c193y2) current expressed in HEK293 cells (IonFlux)

Figure 3. Ionflux, concentration-response plots.

- VU0240551 showed no PAM (A), antagonist (B) or agonist (C) activity within the tested concentration range (EC₅₀ or IC₅₀ > 100 μ M).
- Pentobarbital (PAM, positive control) PAM mode EC₅₀ = 31.1 ± 7.6 μM (A).
- Picrotoxin (antagonist, positive control) inhibited hGABA_{Δ} channels with IC₅₀ = 13.0 ± 2.7 μ M (B).
- GABA (agonist, positive control) activated hGABA_A channels with $EC_{50} = 6.1 \pm 0.3 \mu M$ (C).

3. Materials and Methods

Chemicals

Picrotoxin and γ -amino butyric acid (Sigma Aldrich); VU020551 (Tocris); Pentobarbital Na (Oak Pharmaceuticals). All chemicals were dissolved and serial diluted in 100% dimethyl sulfoxide (DMSO) at 1000x of the treatment concentration. Final dilutions were made in media (MEA) or assay buffer (IonFlux). Final assay concentrations: DMSO, 0.1%.; VU0240551 (0.12-10 μM, MEA and 0.41-100 μM, IonFlux); picrotoxin (3μM, MEA and 1-100 μM, IonFlux); Pentobarbital-Na (1-100 μM, MEA and IonFlux); GABA (0.41-100 μM, IonFlux).

CNS MEA:

Rat cortical neurons (E18.5; QBM Biosciences).

- Maestro Multi-electrode Array System (Axion BioSystems; 48-well plate)
- Assay performed after cells are maintained 14-17 days in serum-free culture medium
- 15 min recording of neuronal network activity taken immediately prior to and at 1 hr. post compound addition • Statistical analysis (t-test) on average % steady-state changes. Comparisons made for each test concentration normalized to separate vehicle control group. (n = 3-6 wells / treatment).

Endpoint Measures (Bradley et al 2018)

- Single-channel-level spike and burst activity parameters
- Network burst characteristics
- Synchrony indicators

IonFlux Automated Patch Clamp

- HEK cell line stably expressing hGABA_A ($\alpha 1\beta 3\gamma 2$).
- 10 μM GABA (control GABA response, antagonist mode).
- 3 μM GABA (control, PAM mode).
- IonFlux platform optimized for ligand-gated ion channel assays.

6. Summary and Conclusions

- In the rat brain cortex MEA assay, VU0240551 decreased firing and synchrony at 10μM and showed anti-seizure effect as seen for Pentobarbital.
- Picrotoxin (GABA_A-R antagonist) application primarily altered the spontaneous electrical activity for network burst frequency, organization and synchrony metric endpoints.
- When combined with picrotoxin, VU0240551 mitigated picrotoxin-induced seizurogenic effect, mainly the synchrony metric endpoints.
- In the IonFlux assays, VU0240551 showed no activity in agonist, PAM and antagonist modes within the tested concentration range (EC_{50} or $IC_{50} > 100 \mu$ M).
- Combined together, the data suggested that VU0240551 produced anti-seizurogenic effect is mediated via KCC2 inhibition.

Acknowledgements

Lindsey Talecki, Patricia Valentine, Shuya Wang and Tom Hudzik

References

- Ru Liu et al., 2020. Role of NKCC1 and KCC2 in Epilepsy From Expression to Function. Frontiers in Neurology. Vol 10, 1-12.
- Bradley, S., et al., 2018. In vitro screening for seizure liability using microelectrode array technology. Toxicol. Sci. 1–14. http://dx.doi.org/10.1093/toxsci/kfy029.

