Neural Co-culture and Glial Interaction

Neural Applications
Request Information

A neural co-culture is simply an in vitro culture that includes more than one type of cell. Because neurons co-exist with other types of cells in the central nervous system, such as microglia and astrocytes, neural co-cultures can better mimic the complex interactions between cells and provide a more robust platform for studying neurodevelopment, disease progression, and neural function. Dysfunction of microglia, a key component of the nervous system’s innate immune system, has been implicated in many neuropsychiatric and neurodegenerative diseases, including bipolar disorder, depression, Alzheimer’s disease, and Parkinson’s disease.

To explore neuro-immune interactions and how the Maestro is being used to investigate their impact in health and disease, download our Publication Highlights review.

Model complex neural co-culture interaction with the Maestro Pro

Investigate microglial and astrocyte regulation of neural activity
>

Microglia continuously monitor their microenvironment and respond to pathological changes. They play a critical role in protecting the brain from runaway excitation by regulating local neural activity and acting as the resident macrophage scavengers.

By recording from co-cultures of primary cortical neurons and microglia, the Maestro MEA platform reveals the mechanisms underlying microglial control of neural activity. Read Badimon et al, Nature 2020 for more details.

microglial regulation of neural activity

Microglia regulate neuronal activity in an adenosine receptor-dependent manner. When neurons are active, they release adenosine triphosphate (ATP), which nearby microglia convert to the neural activity inhibitor adenosine. Microglial suppression of glutamate-induced activity is blocked by an adenosine receptor antagonist. Figure modified from Badimon et al, Nature 2020.

Astroctye-neuron interactions also support homeostatic regulation of neural network activity. When co-cultured with astrocytes, iPSC-derived glutamatergic neurons show a 40% increase in network bursting (n=10 wells). After the addition of 100 nM picrotoxin, the difference increases to 84%. No activity is seen with astrocytes alone (data not shown), suggesting the astrocytes are not responsible for the activity directly, but through their influence on the glutamatergic neurons.

Neural co-culture raster plot from MEA system
Neural co-culture activity in raster plot from Maestro MEA
Neural co-culture activity compared over time

(A) A raster plot of glutamatergic neurons and (B) glutamatergic neurons with astrocytes. (C) The response of network burst frequency in both cultures to 100 nM picrotoxin.

 

 

Click here to download the Axion BioSystems Neural Activity Brochure

 

5 star review

The MEA system is a great addition to our lab and has expanded our studies.


Our lab has benefitted significantly by combining the power of the Maestro MEA system and AxIS software, with our human stem cell-derived neuron-glial cell cultures. We are now able to follow, in real time, the development and functional maturation of neurons, glia, and neural circuits, not only over weeks but over years. We can ask new scientific questions that, previously, were difficult or impossible to answer. In some of our most recent experiments, we were using the MEA system to record from human neurons maintained in culture for almost 2 years. We believe this may be a record for 2D human neuroglial cell cultures.

- Robert Halliwell. University of the Pacific School Of Pharmacy, California, USA

Maestro Edge